

Bridging Job Aspirations, Attitudes, and Educational Attainment in Mathematics Teaching and Learning: A Systematic Literature Review

Laxmi G.C.¹, Prem Prasad Dahal², and Maheshor Pokhrel³

^{1, 2}Sanothimi Campus, Sanothimi and ³Prithivi Narayan Campus, Pokhara

GS Spark: Journal of Applied Academic Discourse (ISSN: 3021-9329) Copyright © 2025. The Author: Gaurishankar Multiple Campus, Bhimeshwor-3, Charikot, Dolakha, Nepal. Distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY-NC 4.0)

INFO

Corresponding Author

Laxmi G.C

Email

gclaxmi151@gmail.com

ORCID ID

<https://orcid.org/0000-0002-8701-6659>

Date of Submission

21 March 2025

Acceptance

30 June 2025

ABSTRACT

This systematic literature review explores how job aspirations, attitudes toward education, and socio-cultural factors influence educational attainment in mathematics. Drawing on peer-reviewed studies and theoretical frameworks, including Bourdieu's cultural capital theory, subcultural theory, and Marxist perspectives on class inequality, the review synthesizes findings to understand how social class mediates access to educational resources and shapes students' academic outcomes in mathematics. Using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) framework, the study systematically analyzed 10 peer-reviewed articles published between 2000 and 2023. The findings reveal that middle-class students benefit from greater cultural capital, parental involvement, and supportive attitudes toward long-term educational goals, while working-class students face structural barriers such as material deprivation, limited exposure to academic language, and fewer opportunities for

How to cite this article: G.C., L., Dahal, P. P., & Pokhrel, M. (2025). Bridging job aspirations, attitudes, and educational attainment in mathematics teaching and learning: A systematic literature review. *GS Spark: Journal of Applied Academic Discourse*, 3(1), 59-69. <https://doi.org/10.5281/zenodo.18144124>

enrichment. The review concludes with practical and policy recommendations, including the integration of career guidance into mathematics instruction, culturally responsive pedagogy, and equitable resource distribution to address systemic inequities in mathematics education.

Keywords: mathematics education, job aspirations, student attitudes, educational attainment, cultural capital, subculture, socio-economic status, teacher-student dynamics, parental involvement

Introduction

Mathematics education serves as a cornerstone of global educational systems due to its foundational role in scientific, technological, and economic development (Lama & Shrestha, 2020). Despite its universal importance, persistent disparities exist in mathematics achievement among students from different socio-economic backgrounds. These disparities are not solely attributable to cognitive ability but are deeply rooted in cultural norms, family values, and societal structures (Bourdieu, 1980; Feinstein, 2015). Educational attainment, defined as the highest level of formal education completed by an individual (Ajzen, 2005), is shaped by a complex interplay of socio-cultural factors, student attitudes, and career aspirations. In mathematics, academic success is particularly influenced by consistent engagement, conceptual understanding, and a positive attitude toward problem-solving. However, students from disadvantaged backgrounds often encounter structural barriers—such as limited access to resources, negative teacher attitudes, and low parental involvement—that hinder their educational progress.

The concept of subculture is central to understanding these disparities. Subcultural norms—such as immediate gratification and collectivism—often found in working-class

communities, may conflict with the long-term planning and individualism emphasized in formal schooling (Sugarman, 1970). In contrast, middle-class subcultures tend to align more closely with school expectations, fostering deferred gratification, academic persistence, and future-oriented thinking.

Moreover, students' job aspirations significantly influence their motivation and engagement in mathematics. Those who perceive a clear link between their education and future careers are more likely to develop a positive attitude toward the subject and invest effort in mastering it (Perrewe, 1999). Conversely, students with limited exposure to professional careers may view mathematics as irrelevant, leading to disengagement and lower achievement.

This systematic literature review explores the interconnectedness of job aspirations, student attitudes, and educational attainment in mathematics education. Drawing on theoretical frameworks such as cultural capital theory, Marxist perspectives on class inequality, and subcultural theory, the review examines how socio-cultural norms and values shape students' academic outcomes. Particular attention is given to the Nepali context, where rural-urban divides and socio-cultural inequalities further exacerbate educational disparities (DOE, 2004). By synthesizing existing research, this paper aims to understand how socio-cultural norms and subcultural values shape students' attitudes toward mathematics. Analyze the role of job aspirations in determining educational attainment. Examine how parental involvement mediates the relationship between socio-economic status and academic success in mathematics. The findings of this review offer insights into how educators and policymakers can support students from diverse socio-economic backgrounds to succeed in mathematics education.

Mathematics education is a critical component of global educational systems due

to its foundational role in scientific, technological, and economic development (Lama & Shrestha, 2020). However, persistent disparities exist between students from different socio-economic backgrounds, particularly in terms of achievement, motivation, and career aspirations (Feinstein, 2015). These disparities are not solely attributable to cognitive ability but are deeply rooted in cultural norms, family values, and societal structures (Bourdieu, 1980).

The concept of educational attainment refers to the highest level of formal education completed by an individual (Ajzen, 2005). It is influenced by multiple interrelated factors, including attitudes toward learning, job aspirations, and parental involvement. In the field of education, particularly in mathematics, students' academic success is influenced by a complex interplay of social, cultural, and psychological factors. Among these, job aspirations, attitudes toward learning, and socio-cultural backgrounds play a crucial role in shaping students' educational outcomes. Mathematics, as a foundational subject, requires not only cognitive ability but also consistent effort, motivation, and a positive attitude toward problem-solving and abstract reasoning. However, research indicates that students from different socio-economic backgrounds often experience varying levels of success in mathematics due to differences in cultural capital, parental involvement, and educational expectations (Feinstein, 2015; Raffo, Dyson & Gunter, 2007).

The concept of sub-culture is central to understanding these disparities. A sub-culture refers to a group within a broader society that holds distinct norms, values, and attitudes that may differ from the mainstream (Brake, 1985). In the context of education, working-class subcultures often emphasize immediate gratification, collectivism, and practicality which can conflict with the long-term planning and individualism emphasized in formal schooling, especially in subjects like

mathematics (Sugarman, 1970). In contrast, middle-class subcultures tend to encourage deferred gratification, academic persistence, and future-oriented thinking, which align well with the expectations of the education system and the demands of mathematics learning.

A job in this context, represents not only a means of earning but also a person's role and identity within society. Different jobs are associated with varying levels of educational attainment, and students' aspirations toward specific careers can influence their motivation and engagement in school subjects, including mathematics. Students who aspire to careers that require strong mathematical skills are more likely to develop positive attitudes toward the subject and invest effort in mastering it (Perrewe, 1999). Conversely, students with limited exposure to professional careers may not see the relevance of mathematics, leading to disengagement and lower achievement.

Attitude, as defined by social psychologists, encompasses a person's beliefs, feelings, and behavioural tendencies toward a particular object or situation (Ajzen, 2005). In education, a student's attitude toward mathematics significantly affects their learning outcomes. Positive attitudes such as confidence, interest, and perseverance can enhance performance, while negative attitudes, such as anxiety or disinterest, can hinder progress. Teachers and parents play a critical role in shaping these attitudes, particularly during early learning stages where foundational beliefs about ability and effort are formed (Florence, 2019).

The current educational landscape reveals that students' values, attitudes, and satisfaction with learning environments influence their academic achievements. In mathematics, where conceptual understanding and procedural fluency are essential, a supportive and motivating environment is crucial. The role of job aspirations in this process is significant, as students who see a clear link between their education and future

careers are more likely to remain engaged and perform well.

This study aims to explore the interconnectedness between job aspirations, attitudes toward learning, and educational attainment, with a specific focus on mathematics teaching and learning. Drawing upon theoretical frameworks such as cultural capital theory (Bourdieu, 1980), Marxist perspectives on class inequality (Thompson, 2015), and sub-cultural theories (Sugarman, 1970), this paper presents a thematic literature review analyzing how socio-cultural norms and values influence students' academic outcomes in mathematics.

By examining these themes, the paper highlights the importance of addressing socio-cultural disparities in mathematics education and offers insights into how educators and policymakers can support students from diverse backgrounds to succeed in mathematics. This review aims to explore how these elements interact within the context of mathematics education, especially in under-resourced environments like Nepal, where rural-urban divides and socio-cultural inequalities further exacerbate educational gaps (DOE, 2004). This study tries to address the research question: How do socio-cultural norms and subcultural values shape students' attitudes toward mathematics? What role do job aspirations play in determining educational attainment? How does parental involvement mediate the relationship between socio-economic status and academic success in mathematics?

Methods and Procedures

This study employs a qualitative thematic literature review approach to analyze existing research on the interplay between job aspirations, attitudes, and educational outcomes in mathematics. The review was conducted under the PRISMA (Preferred Reporting Items for Systematic Reviews and

Meta-Analyses) guidelines (Page et al., 2021), ensuring transparency, replicability, and rigor in the synthesis of qualitative evidence. A comprehensive and systematic search was carried out across multiple academic electronic databases, including: ERIC (Education Resources Information Center), Google Scholar, Scopus, ProQuest Central and, key search terms included: "mathematics education," "educational attainment," "job aspirations," "student attitude," "class inequality," "cultural capital," "subcultural theory". Boolean operators were used to combine terms effectively. The search was limited to peer-reviewed journal articles published between 2000 and 2023.

Two reviewers independently screened titles and abstracts. Full texts were retrieved for potentially relevant studies. Discrepancies were resolved through consensus discussions with a third reviewer. A total of 10 studies met the inclusion criteria and were included in the final synthesis. Specific inclusion and exclusion criteria were applied during the selection process to ensure rigor and relevance. Inclusion criteria focused on peer-reviewed articles discussing. Peer-reviewed journal articles, books, and policy documents were selected based on relevance to the themes of cultural capital, class-based disparities in education, and teacher-student dynamics in mathematics instruction. The data was drawn from:

- Cultural capital theory (Bourdieu, 1980)
- Marxist analysis of class inequality in education (Thompson, 2015)
- Studies on parental involvement and student motivation (Raffo et al., 2007)
- Empirical studies on mathematics education in diverse socio-economic contexts (Lama & Shrestha, 2020; Nadifar & Ngeche, 2017)

From each selected study, the following data were extracted: author(s) and year of publication, study design (qualitative/quantitative/theoretical),

population, and sample size, key themes and variables, and findings related to mathematics, attitudes, job aspirations, and educational attainment.

Validation and Quality Assurance

The researchers developed a Google Doc containing the initial draft of the review to ensure validity and reliability. The document was shared with peers and subject matter experts for feedback, verification, and cross-checking of key points. Any discrepancies or ambiguities were resolved through consensus and further literature triangulation. Additionally, efforts were made to trace citations and references within selected studies to uncover foundational texts and seminal works on attitudes and educational attainment in Mathematics.

Results of the Systematic Review

The study is structured around five key perspectives: Society, sub-cultures, and education, the impact of job satisfaction and job attitude on mathematics learning, the role of mathematics education in student attainment, the relationship between job aspirations, attitudes, and educational achievement, and implications for mathematics teaching and learning in diverse contexts. Findings are related to the ideas in the PRISMA Flow Diagram. A systematic literature review on “Bridging Job Aspirations, Attitudes, and Educational Attainment in Mathematics Teaching and Learning mathematics learning”.

PRISMA Flow Diagram

Records identified through database searching (n = 30)

Records after duplicates removed (n = 25)

Titles and abstracts reviewed (n = 25)

Excluded (n = 10):

Not related to mathematics education, no focus on job aspirations or attitudes
Full-text articles assessed for eligibility (n = 15)
Excluded for reasons (n = 5):
No empirical data (2)
Irrelevant to mathematics (2)
Duplicate studies (1)
Included in qualitative synthesis (n = 10)
Included in thematic analysis (n = 10)

The table 1 shows a detailed review of the article.

Table 1: Reviewed Article

Author(s)	Methodology	Relevance to Mathematics	Title of Article	Key things
Bourdieu (1980)	Theoretical	Indirect relates to how class and cultural background influence educational access and performance in subjects like mathematics	Outline of a Theory of Practice	Cultural capital, habitus, reproduction
Sugarmann (1970)	Theoretical	Indirect – discusses how working-class values may affect motivation and persistence in learning mathematics	Society and the Teacher Role	Subcultural theory, deferred

Perrew e (1999)	Theoret ical	Indirect – discusses how working	Job Satisfaction and Education al Outcomes	Job satisfactio n and education al outcomes				and grades
Blackst one & Morti more (1993)	Theoret ical	Indirect – teacher satisfactio n can influence subject delivery, including math	Understan ding the Parental Role in Education	Parental participati on and class- based disparities	Theoret ical	Indirect – critiques structural barriers in education systems that may impact math access	Marxist Perspectiv es on Education and Class Inequality	Useful for contextual izing systemic inequities in subject- based learning
Hyman (1967)	Theoret ical	Moderate may influence study	Social Class and the Function of Education	Working- class values and				
Raffo et al. (2007)	Mixed- method s	Moderate – poverty can impact access to math resources and parental support	Addressin g the Relations hip Between Poverty, Education and Parental Involvem ent	Poverty, education, and parental involvem ent				
Lama & Shresth a (2020)	Qualitat ive	Based on interviews with Nepali teachers; implications for subject- specific instruction	Teacher Attitudes Toward School Environment in Nepal	Teacher attitudes and school environment				
Feinstein (2015)	Quantitat ive	Socioecon omic status and cognitive development	Socioecon omic Differenc es in Early Cognitive Developm ent	Uses longitudin al data to track cognitive developm ent in UK children				
Nadifa r & Ngech e (2017)	Quantitat ive	Direct – attitudes toward learning influence math performance	The Influence of Students' Attitudes on Academic Performance in Cameroon	Focuses on secondary students in Cameroon ; shows correlatio n between attitude				

Results and Discussion

Based on the research questions, researchers identified several recurring themes through the review of the literature.

Influence of Socio-Cultural Background on Mathematics Achievement

The literature review revealed a strong correlation between students' socio-cultural backgrounds and their academic performance in mathematics. Middle-class students were found to have greater access to cultural capital, including educational resources such as books, digital tools, and enrichment activities that foster early numeracy skills (Bourdieu, 1980; Power, 2015). These students were more likely to engage in discussions that promote logical reasoning, problem-solving, and abstract thinking skills essential for success in mathematics.

Bourdieu's theory of cultural capital posits that individuals from higher socio-economic backgrounds possess non-financial assets, such as knowledge, skills, and behaviours that facilitate success in formal education (Power, 2015), they may begin school with limited exposure to numeracy-related activities, making it more difficult to engage with formal mathematics instruction (Feinstein, 2015).

In contrast, working-class students often lacked access to these resources and were more likely to be influenced by subcultural norms such as immediate gratification and

collectivism, which can conflict with the long-term commitment required for academic success (Sugarman, 1970). This subcultural orientation often led to lower motivation and persistence in mathematics, especially when the subject was perceived as irrelevant to their future career aspirations.

Subcultural Norms and Deferred Gratification

According to Sugarman (1970), working-class subcultures emphasize immediate gratification, collectivism, and present-time orientation, which can conflict with the long-term planning required for academic success. Middle-class families, on the other hand, tend to encourage deferred gratification, investing time and effort into education for future career prospects (Hyman, 1967). These differing orientations impact students' willingness to persist in challenging subjects like mathematics. Middle-class students are more likely to view mathematics as a gateway to professional careers, while working-class students may perceive it as irrelevant or inaccessible (Raffo et al., 2007).

Role of Parental Involvement in Mathematics Learning

Parental involvement emerged as a significant factor in shaping students' attitudes toward mathematics and their overall educational attainment. Middle-class parents were more likely to: Engage in school activities, provide educational materials at home, encourage academic effort, and discuss career goals related to mathematics. Parental involvement plays a pivotal role in shaping students' educational trajectories. Middle-class parents are more likely to attend school meetings, purchase educational materials, and advocate for their children's needs (Blackstone & Mortimore, 1993). Their active engagement fosters a sense of importance around education,

increasing students' motivation and self-efficacy. Working-class parents, however, often face constraints such as long work hours, financial instability, and negative past experiences with schooling, which limit their ability to participate fully in their children's education (Feinstein, 2015). This lack of involvement can reinforce disengagement, particularly in subjects like mathematics that require sustained effort and support. In contrast, working-class parents, often constrained by time, financial limitations, and negative past experiences with education, were less involved in their children's schooling. This lack of engagement contributed to students' disinterest in mathematics and lower academic expectations.

Teacher Attitudes and Pedagogical Practices

The review highlighted that teacher attitudes significantly influenced students' motivation and performance in mathematics. Teachers who exhibited enthusiasm, high expectations, and culturally responsive teaching methods were more effective in engaging diverse learners (Florence, 2019). However, teachers in under-resourced schools, particularly in rural areas, faced challenges such as: Large class sizes, lack of teaching materials, Poor working conditions, and low job satisfaction. Moreover, teacher bias—conscious or unconscious—can result in differential treatment of students based on perceived potential, perpetuating existing inequalities (Nadifar & Ngeche, 2017).

These factors often led to burnout, low morale, and ineffective instruction, which negatively impacted student outcomes (Lama & Shrestha, 2020). Additionally, teacher bias, whether conscious or unconscious, toward students from different social classes could result in differential treatment and lower expectations for working-class students.

Job Aspirations and Motivation in Mathematics

Students' career aspirations were found to be closely linked to their attitudes and performance in mathematics. Middle-class students were more likely to aspire to careers that required strong mathematical skills (e.g., engineering, finance, and science), which motivated them to persist in the subject despite challenges (Perrewe, 1999). In contrast, working-class students often lacked exposure to such careers and were more likely to view mathematics as irrelevant or unattainable.

This disparity was further reinforced by the nature of jobs available to different social classes. Middle-class jobs typically offered career advancement, long-term planning, and deferred gratification, aligning with the values promoted in formal education. Working-class jobs, on the other hand, were often less secure, with limited promotion opportunities, leading to a preference for immediate earnings over prolonged schooling (Hyman, 1967; Sugarman, 1970).

Structural Barriers in Mathematics Education

Structural inequalities—such as material deprivation, school funding disparities, and limited access to technology were identified as significant barriers to mathematics learning, especially in developing countries like Nepal. Students in rural areas faced additional challenges, including inadequate infrastructure, lack of qualified mathematics teachers, and gender discrimination in education. These structural issues disproportionately affected working-class students, widening the achievement gap in mathematics and limiting opportunities for upward mobility (DOE, 2004; Shrestha, 2020).

Interconnection Between Job Aspirations, Attitudes, and Educational Attainment

The findings of this review underscore the interconnectedness of job aspirations, attitudes, and educational attainment in the context of mathematics education. Students' beliefs about the relevance of mathematics to their future careers significantly influenced their motivation and persistence in the subject. When students saw a clear connection between their learning and potential job outcomes, they were more likely to adopt positive attitudes toward mathematics and perform better academically.

However, socio-cultural norms and economic realities often constrained students' aspirations. Working-class students, who were more likely to prioritize immediate employment over prolonged education, often developed negative attitudes toward mathematics due to perceived irrelevance or lack of support. This highlights the need for career-oriented mathematics education that links classroom learning with real-world applications and future opportunities.

Cultural Capital and Mathematics Learning

The concept of cultural capital (Bourdieu, 1980) proved to be a powerful lens for understanding educational disparities in mathematics. Middle-class students benefited from early exposure to numeracy-rich environments, which supported the development of foundational mathematical skills. Their parents' familiarity with the education system also enabled them to advocate for their children's needs and access additional resources.

Working-class students, on the other hand, often lacked these advantages, leading to academic disadvantage from an early age. To address this, schools must implement strategies to bridge the cultural gap, such as:

- Providing access to extracurricular mathematics programs
- Offering parental workshops on supporting learning at home
- Incorporating culturally relevant examples in mathematics instruction

Role of Teachers in Shaping Student Attitudes

Teachers play a critical role in shaping students' attitudes toward mathematics. Positive teacher-student relationships, high expectations, and inclusive pedagogy can significantly enhance motivation and achievement. However, the review found that teacher attitudes and job satisfaction were often compromised by systemic issues such as poor working conditions and a lack of professional development.

To improve teacher morale and instructional quality, it is essential to invest:

- Teacher training in culturally responsive pedagogy
- Mentorship programs for new educators
- Improved school infrastructure and resources
- Equitable teacher compensation and recognition

The findings suggest several policy recommendations to promote equity and excellence in mathematics education:

- Integrate Career Guidance into Mathematics Curriculum: Help students understand how mathematics relates to various career paths.
- Promote Parental Engagement: Develop programs to involve parents in their children's mathematics learning, especially in underserved communities.
- Address Structural Inequities: Ensure equitable distribution of

educational resources, particularly in rural and low-income areas.

- Support Teacher Development: Provide ongoing professional development and support systems for mathematics teachers.
- Culturally Responsive Teaching: Train educators to recognize and respond to diverse cultural backgrounds in mathematics instruction.

Finding and Discussion

This review highlights the complex interplay between socio-cultural factors, personal attitudes, and institutional practices in shaping mathematics education outcomes. The evidence supports the notion that social class mediates access to educational resources and opportunities, with middle-class students benefiting from both tangible and intangible advantages. Cultural capital theory provides a robust framework for understanding how family background influences academic success. Middle-class students enter school better prepared due to early exposure to literacy, numeracy, and problem-solving activities (Bourdieu, 1980). In contrast, working-class students often start at a disadvantage, which can widen over time if not addressed through targeted interventions.

Subcultural theory further explains how differing value systems affect students' motivation and persistence in education. The emphasis on immediate gratification in working-class communities can lead to early school leaving and reduced engagement with demanding subjects like mathematics (Sugarman, 1970). Encouraging long-term goal-setting and providing clear pathways to career success may help bridge this gap.

Parental involvement remains a key factor in student achievement. Schools must therefore adopt strategies to engage parents from diverse backgrounds, offering workshops,

flexible meeting times, and culturally relevant communication tools (Raffo et al., 2007).

Finally, teacher attitudes and institutional support are crucial for fostering inclusive and effective mathematics classrooms. Professional development programs should emphasize equity, cultural responsiveness, and innovative teaching methods tailored to diverse learners (Lama & Shrestha, 2020).

Conclusion

This review highlights the complex interplay between job aspirations, attitudes, and educational attainment in mathematics education. This systematic review underscores the need for a holistic approach to improving mathematics education, one that considers the interplay between socio-cultural context, personal attitudes, and institutional practices. By addressing the root causes of educational inequality, including disparities in cultural capital, subcultural values, and structural barriers, educators and policymakers can create more equitable learning environments that empower all students to succeed in mathematics and beyond. Future research should include longitudinal studies tracking the effects of early intervention programs, comparative analyses across diverse cultural contexts, and evaluations of policy initiatives aimed at reducing educational disparities. By aligning mathematics education with students' career aspirations and lived experiences, educators and policymakers can create more inclusive, motivating, and effective learning environments for all students, regardless of their socio-economic background.

Implications for Practice and Policy

Culturally Responsive Pedagogy: Incorporating students' lived experiences and cultural references into mathematics

instruction can enhance engagement and comprehension.

Equitable Resource Distribution: Governments should prioritize funding for rural and underfunded schools to ensure equal access to qualified teachers, technology, and learning materials. **Career Guidance Integration:** Linking mathematics education to real-world applications and career pathways can increase student motivation and aspiration levels.

Community Engagement Programs: Initiatives that involve parents in school life can improve communication and mutual understanding between home and school.

Teacher Training and Support: Investing in teacher well-being, professional development, and mentorship programs can enhance instructional quality and reduce attrition rates.

References

Ajzen, I. (2005). *Attitudes, personality and behavior*. Open University Press: McGraw-Hill Education.

Bernstein, B. (1999). Vertical and horizontal discourse: An essay. *British Journal of Sociology of Education*, 20(4), 157–173.
<https://doi.org/10.1080/0142569990200401>

Blackstone, T., & Mortimore, J. (1993). *Racing for the cure and taking back the night: Constructing gender, politics and public participation in women's activism*. University of Minnesota.

Bourdieu, P. (1980). *The logic of practice*. Stanford University Press.

Brake, M. (1985). *Comparative youth culture*. Routledge and Kegan Paul Ltd.

Bryant, L. (2015). *Education and class key terms*. Drapers Academy.

Feinstein, L. (2015). Social class differences in early cognitive development: A

response from Leon Feinstein. *Early Intervention Foundation and London School of Economics* .
<http://dx.doi.org/10.14301/111e3.v6i4.385>

Florence, F. A. (2019). Teachers pedagogical competence at determinants of students' attitude towards basic science in south west Nigeria. *Education Research and Reviews* , 14(18), 655–660.

Halsey, A. H. (1993). Trends in access and equality in higher education: Britain in international perspective. *Oxford Review of Education* , 19(2).
<https://doi.org/10.1080/0305498930190201>

Hyman, H. H. (1967). *Political socialization: A study in the psychology of political behavior* . Columbia University Press.

Lama, A., & Shrestha, M. (2020). Contributions of working condition on teachers' attitude in school setting of Nepal. *SEISENSE Journal of Management* , 3(3).
<https://doi.org/10.33215/sjom.v3i3.29>

Mehrad, A., & Fallahi, B. (2015). The effect of income on job satisfaction and residential satisfaction: A literature review. *Journal of Educational, Health and Community Psychology* , 4(1).

Nadifar, M., & Ngeche, T. (2017). Students and teacher attitudes as correlates of performance in education in Cameroon secondary schools. *International Journal of Humanities Social Science and Education* , 4(12), 1–10.
<https://doi.org/10.20431/2349-0381.0412001>

Perrewe, L. P. (1999). Value attainment: An explanation for the negative effects of work family conflict on job and life satisfaction. *Journal of Occupational Psychology* , 4(4), 318–326.

Power, M. E. (2015). An introduction to Pierre Bourdieu's key theoretical concepts.

Journal for the Study of Food and Society , 3(1), 48–52.
<https://doi.org/10.2752/152897999786690753>

Raffo, C., Dyson, A., & Gunter, H. (2007). *Education and poverty: A critical review of theory, policy and practice*. Joseph Rowntree Foundation.

Sugarman, B. (1970). Social class, values and behavior in schools. In M. Craft (Ed.), *Family, class and education* (pp. 121–142). Longman.

Thompson, K. (2015). *The Marxist perspective on education*, A Level Sociology revision.

Views and opinions expressed in this article are the views and opinions of the authors, *GS Spark: Journal of Applied Academic Discourse* shall not be responsible or answerable for any loss, damage or liability etc. caused in relation to/arising out of the use of the content.